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We introduce and Walyze a collection of difference schemes for the numerical solution of the,
"lwink equation ch5r6diner type st -m (a * -- NAWi>.This includes explicit and implicit

schemes, 2-level and 3-level schemes and real and complex schemes. Many of these are analogous
to classical schemes for the heat equation and the wave equation but some schemes am unique
to the Schr6dinger equation. Von Neumann type stability results are given for all the schemes
and extensions to higher dimensions are derived in most cases. Many of stability results are quite
different from the corresponding results for the heat equation and the wave equation.
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1. latroductloa
Equations of the Schr6dinger type arise in many disciplines, such as quantum mechanics, fluid

mechanics, plasma physics, laser propagation, acoustics and optics 14, 6, 19, 23, 26, 27, 34, 36, 36,
37]. This paper is primarily concerned with the numerical solution of the equation

aa = Aus , (1.1)

with A w a + il and a_ 0, and its extension to higher dimensions:

Alualu, (1.2)

where A, at + i1, with at 2> 0 nd 61 real, and al + q16 0 for 11, - -. ,n.
Equation (1.1) includes both the heat equation u, - su. and the Schr5dinger equation

t - iu... It is well known that a rather complete collection of stability results for difference
schemes exist for the heat equation 129]:

ag - a ug. (1.3)
S

and for the advection-diffusion equation 16, 9]:

of W asan + bu.. (1.4)

It is our intention to provide a similar collection of results for the Schr6dinger equation. We propose
a collection of finite difference schemes, and analyze their accuracy and stability properties. Some .
of the schemes are analogous to well-known schemes for the wave equation and the heat equation
but others are unique to the Schr6dinger equation. This includes explicit and implicit schemes,
2-level and 3-level schemes and real and complex schemes. Many of these are analogous to classical
schemes for the heat equation but some schemes am unique to the Schr6dinger equation. Von
Neumann type stability results are derived for all the schemes and extensions to higher dimensions
are derived in most cases. Many of stability results are quite different from the corresponding
results for the heat equation and the wave equation.

The existence, uniqueness and regularity properties of equations of the Schr6dinger type have
been investigated in recent years 12, 3, 14, 17, 26, 34, 39]. We are mainly going to discuss finite
difference methods for such equations. Among the numerical methods for these equations, the
finite diflerence method is not only a basic one, but also one of the most extensively used. Since
many conventional explicit schemes are unconditionally unstable for the Schr6dinger's equation
11, 16, 19, 23], implicit schemes have been the most popular - especially the Crank-Nicolson
scheme. These results can be found in [1, 10, 11, 16, 16, 19, 23, 27]. Recently, it has been found
that stable explicit schemes for equations of the Schr~dinger type can be derived if appropriate
dissipative terms e added (8] and some of these explicit schemes have been applied to underwater
acoustics problems 17]. The articles 116, 40] investigate the existence and convergence of implicit
schemes. In recent years, the trend of applying spectral methods (4, 5, 12, 13, 18, 28, 35, 36, 37,
381 and the finite element methods [11, 16, 31] is increasing as well. Methods of lines methods have
also been used 122, 24]. Since the solutions of nonlinear equations of the Schrodinger type often
possess conservation laws, attempts have also made to construct schemes which satisfy discrete
conservation laws. To achieve this, M. Delfour et. al [III modified the Crank-Nicolson scheme
and J.M San-Serna, and V.S. Manoranjan [30] used the Leap-frog technique. Among three level
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schemes, the Leap-frog scheme has been suggested [31]. In 1151, predictor-corrector schemes are
discussed. For applications of some of the schemes proposed in this paper, the reader is referred
to the references [7, 20, 21, 23).

In Sec. 2, our definition of stability is given, as well as a general method for deriving stability
results from the characteristic polynomial of a numerical scheme. In Sec. 3, the special case a = 0
is considered first and the issue of the existence of stable 2-level explicit schemes is addressed.
In Sec. 4, we consider a general two-level scheme for (1.1). In Sec. 5, 6 and 7, we consider
3-level schemes: the Leap-frog scheme, the Du-Fort Frankel scheme and the backward difference
scheme. In Sec. 8, we separate the real and imaginary parts of (1.1), and consider schemes that
are specifically designed for the resulting system of real equations.

Throughout this paper, k denote the temporal mesh size, k the spatial mesh size, r ,=
4sin , 0S_ 0_. 2x and - -mr.

2. Defintlon of StabMty and The Schur-Cohn Theory

The usual von Neumann type definition of stability requires that the roots R. of the charac-
teristic polynomial of a numerical scheme satisfy

IRiI' 1+ O(k) (2.1)

[29). While this is the appropriate definition of stability for proving convergence as k and h tend to
zero, in conjunction with the Lax-Equivalence theorem [291, for practical computations with fixed
k and h this definition allows the numerical solution to grow with the number of time steps taken.
For equations the solutions of which are known to be nonincreasing in time, as is the case for (1.1),
this is often undesirable. Hence, for the stability of a numerical scheme, we shall require that the
numerical solutions also do not gow in time. This definition of stability is sometimes known as
the practical tsa bit criteria [291 and is slightly stricter than the definition (2.1). In the absence
of lower order terms (e.g. us or u) or in the limit as k and A tend to zero, the difference between
the two definitions of stability is usually very slight. In what follows, we shall make this definition
of stability more precise and outline a procedure for systematically deriving stability conditions
for a given numerical scheme.

We shall follow the methodology developed in 16, 91. We define two classes of polynomials:

DefinItion 2.1.
We shall call polynomials O(:) with roots Ri Schur Polpomials if IRA - 1 VJ, and Simple

ve Neumann Polmomials if IR S S 1 Vj and the roots with magnitude equal to one ae distinct.

Let O(z) be the characteristic polynomial corresponding to a particular scheme, obtained via
Fourier analysis 1291.

DMnltion 2.2:
A numerical scheme is defined to be stale if its characteristic polynomial is Simple von Neu-

mnn.

To determine whether a polynomial is a Simple von Neumann polynomial, we shall use the
theory of Schur [26, 33, 321. This theory enables one to determine conditions on the coelcients of
the characteristic polynomial for it to be Simple von Neumann.

Given a polynomial
O(z) =o + @1 2 +.-. + a 'm
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of degree &' (with a, 16 0, ao 1 0), one can associate with another polynomial ', defined by

j=0

where i denotes the complex conjugate of a. The reduced polynomial 6 is defined by

#(4) = ( '(O)(z) - 0(o)(z))/z.

By defintion, the degree of #1 is one less than that of . The main results that we need are contained
in the following two theorems:

Theorem 2.1. # is a Schur Polynomial if 100(0)1 > I#(0)I and #1 is a Schur Polyomial.

Theorem 2.2. # is a Simple on Neumann Polynomial if either (1) I#(0)l > I (o)l and #1 is a
Simple von Neumann Polynomial, or (2) #1 a 0 and qV is a Schur Polynomial (0, denotes the
derivative of # with respect to its dependent variable).

By repeated applications of the above two theorems, it is possible to reduce the question of
whether an n-th degree polynomial is a Simple von Neumann Polynomial to that for a first degree
polynomial, which can be solved more easily by analytical means. This procedure turns out to
be very effective for determining stability limits of general numerical schemes, as compared to
first finding the roots of the characteristic polynomial explicitly and then determining conditions
for their absolute values to be less than unity. Furthermore, this last approach may not even be
applicable for polynomials of higher degrees which arise in the analysis of multi-level schemes and
systems of equations (see Sec. 8). Finally, it is worth noting that this reduction process preserves
the necessity and sufficiency of the stability conditions.

8. Stable Explicit Scheme for u, = iu.

We shall first consider the more special equation

ve = iuse. (3.1)

Even in this simple case, the stability properties of some popular schemes are quite different from
that for the superficially similar heat equation ul = u.

8.1. Taylor Sr Scheme
Consider the basic Euler Scheme:

U. - U.

k iDju, (3.2)

where -u2-27 u7 -1.where D' h +  (3.3)

The truncation error is O(k, h2). The corresponding characteristic polynomial is

(z) z - (1 -i). (3.4)

Since the only root is R I -sy and 1R12 = 1+9 > 1 for -y # 0, #(:) is not Simple von Neumann,
and thus the Euler scheme is unconditionally unstable, as is well-known 18, 23).
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The Euler scheme is the first member of a clan of schemes derived from the following Taylor
series expansion of a solution u(z, t) of (1.1):

Pw S(z,t-+ k) = u(z,t)+ kt,, + ufl +.. .

Su(z, t) + k(iu) + V( .,,) + ... (3.5)

A family of schemes can be derived from (3.6) by replacing the spatial derivatives by difference
operators, namely:

t+1 3

The truncation error is O(/', k2). The Euler scheme corresponds to p -1. By retaining the next 5
term in the expansion (p = 2), we obtain the following Lax-Wendroff type scheme:

kk -

The truncation error is O(h', A2). The corresponding chaacteristic polynomial is

Since the only" ootis- f (I -M

I12 +-= 1 + > 1 for 7 &0,

this scheme is also unconditionally unstable 18].
Since the first two members of this family of schemes are unconditionally unstable, it is

of theoretical interest to determine whether there is any member that is conditionally stable.
Moreover, this has practical implications as well, because simple explicit schemes are easier to
implement (and vectorize) than implicit schemes, especially for higher dimensional problems.

The third order (in time) scheme derived this way has a characteristic polynomial given by

OW-2- (I +

Since
IRs -1 - ++ I ,".

the condition that 0(z) be Simple von Neumann reduces to

max(~~O
2 F <0
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which is satisfied if and only if 7g S Vi. The stability condition is thus

-4

Fot the fourth order scheme, we have

#(Z) -z - - ~~ + +

After a similar computation, it can be verified that this scheme is stable if and only if r <S

We thus we that there ae stable members in this family of schemes. Unfortunately, while
the third and fourth order schemes am conditionally stable, they are not very practical for initial
boundary value problems because their spatial stencils extends over 7 (rep. 9) points, which makes S
the construction of stable numerical boundary conditions difficult.

This leads to a natural question:
Does there exts etable ehcit echemes with emale st encib

3.2. Schemes With Artlldal DUsIpatlo -

The answer to this question is positive. As shown in 181, stable explicit schemes with a 5-point
stencil can be derived from the Euler scheme by adding appropriate dissipative terms. Although
the addition of dissipation to stabilize a numerical scheme is rather natural, the question remains
as to whether this is the only way to obtain a stable scheme for (3.1). In what follows we shall
answer this in the positive by deriving the dissipative schemes in 18) from a general sheme with a
5-point spatial stencil that satisfies certain symmetry conditions. -

Suppose an explicit scheme to solve (3.1) takes the form

I im cjI -j... (3.6)

Of course, cj+iuj4. must be a consistent approximation of iu. for (3.6) to be consistent with

(3.1). Using Taylor expansion, we find that the following consistency conditions must be satisfied:

L -

Fc;+ =2i
1 PCJ+I M 2.

If we look for schemes with symmetry, i.e. cj+j - ej.a, then (3.7) becomes

S+2 , eJ4 - 0,
> 0 W ( 3 .8 )-

I>0
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If we take 1 = -1,0, 1, ie., using 3 points to approximate in8 ., from (3.8) we find co -
,- -. = C- . This is just the Euler scheme (3.2) and is unconditionally unstable.

Now, let us take I - -2,-1,0,1,2, i.e., using 5 points to approximate iu*8 . Following the
same procedure as above, we can easily find

2i
CO - 6C2 - T

cl = -- - 4e2 ,

where cz is a constant to be determined. We want to determine C2 such that scheme (3.6) is stable.

Writing c2 - j, where c, a + iP with real constants a, P, (3.6) becomes

k = 2 [( + i#) (uj7* + U.._) + (i - 4(o + iO)) (va7 , + w.t.,) (6(a + iP) - 2i) -a7].
(3.9)

After some rearrangements, scheme (3.9) can be rewritten into another form:
n + 0 u.*.3  - 4,+ + 6u7 - U7... .

51;+ - U;+ J I.hI+ +4 (a+ ip1 (3.10)

The last term can be viewed as a disipative term which is added to the ustable scheme

- ~ 4 -' (u,217 + I,

and the truncation error is O(k, h2). The root of the characteristic polynomial for (3.9) is

R - 1- ir + (a + ip)rq2 .

Thus we have "
IR' =(1 + arq2)' + (Pri9 - rq).

= 1 + (r2 + 2ra)q2 - 2r2flwp + rl(a2 +^14.

The condition IRV < 1 reduces to

(r + 2 ) - 2rBr + r(&2 + 52 ),p _0,-

from which it follows that the condition on r is

-2*
r5M(q) a Cl2q + (0q- 1)2

For a finite stability interval, we must have a < 0. By differentiating q(q), it can be verified
that g(q) cannot achieve its minimum within the interval 0 5 , < 4. Thus the conditions on r
reduces to

r5< min(g(O),g(4)),

i.e. -a(.1

( ) ,. --

r: <min -2a, 1 -2* l -.

1W +(4# 1)2
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To obtain the scheme with the least restrictive stability condition, one should make the right
hand side of (3.11) as large as possible. Obviously, one should take # - !. Condition (3.11) then
reduces to r:5_ min -2a,-I)."

The right hand side achieves its maximum when - 2a -1, or a - Thus we have for
the stability condition: :1

1 S . (3.12)

We summarize the results in the following theorem.

Theorem L. For any real 0 and a < 0, the heme (3.10) is conditionally stable, the necessary and
suEcient condition being (3.11). The least restrictive stability condition is (3.12) and is obtained
when am-!,#=

We can also consider a similar dissipative scheme:

'M*+3 on IP -(202 a" 4u71+ + 607 - 4u7...i + 1.j 1 . S + (a + i,)k +- (3.13)

whose dissipative term is different from (8.10). For (3.13), the following theorem has been proved
in is):

Theorem ILL. The scheme (3.13) is stable if and only if a : -j, except for the half line
{a -,P 0), and

(< ,+ V-'i 2+20 T a (3.14)- 4 (o2 + fl)

The least restrictive stability constraint is

1 (3.15)r_<5

and is obtained whena--, PI.

L. Stable Dissipative Schemes In Mult-Dhmendons
We next consider the multi-dimensional equation:

Ug = ibu,,,

I1

We assume that the bh's have the same sign.
Without loss of generality, we assume bg > 0 (1 - 1,..-, m). We consider the natural exten-

sion of scheme (3.10):

k 91at4~D7,+ai)A(7gu. (3.16)
gml

Here j represents a multi-index (jj,-.. ,j;), Dj'", is the second order centered difference operator - -

with respect to ji and Ai is the corresponding mesh size.
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Theorem 3 Scheme (3.16) is stable if and only if a < 0 and

2 ' ak:Smin (-7;w-
The least restrictive stability constraint is

and is obtained when az: -| and P j.
Proof. See Appendix.

4. A General Two-Level Scheme

4.1. The One Dimenslonal Case:

We now return to the attention of the more general equation (1.1). We consider the following
finite difference scheme for (1.1):

u1u+ 1 - A(I - ,)A

where p is a parameter such that 0 :5 p :- 1. It is easy to see that when p = 0, (4.1) is the explicit
Euler scheme, when p = j (4.1) reduces to the Crank-Nicolson scheme and when p = 1, (4.1) is

the fully implicit Backward Euler scheme. The truncation error is O(k, h2) except it is O(k2, h2)
for the Crank-Nicolson scheme.

Theorem 4.1.

1. If 4 _ p _ 1, then Scheme (4.1) is unconditionally stable.

2. If 0 : p < 4 and a > 0, then (4.1) is conditionally stable, the stability condition is

• < l-2)a: (4.2)

3. U10 i s < 4 and a , 0, then (4.1) is unconditionally unstable.

Proof. The root of the characteristic polynomial for (4.1) is

1 -0( - iAG- - i(1 - A&)I
I + P07+ ipb

Therefore -(1 -)@ +(I-p)'&9

IRI1 - (1+ )e+b ( (4.3)
0 + 04"1P + F42-12
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The condition JR12 < 1 reduces to

I- 2p
-2 (a .b)' - a 0. (4.4)

If 4 -< p < 1, then (4.4) automatically holds; hence Scheme (4.1) is unconditionally stable. If
0 #< , then the condition (4.4) reduces to (4.2). Clearly, if a = 0, (4.2) cannot be satisfied for
r > 0 and hence is unconditionally stable.

3 •

Note that when b - 0, (4.2) reduces to the well-known stability condition for the heat equation
1291.
4.2. The Multi-Dinesional Camr

In this section, we are going to extend the results in See. 4.1 to the case of multi-dimensions.
We suppose the equation is of the form (1.2) and consider the natural extension of the scheme 5
(4.1) to multi-dimensions:

+1 u im fn
9"k 1:A_-4' +( )1 ALju 45

=11=1

where we have used the same notation as in Sec. 3.3.
As in Sec. 4.1, here p is a parameter, 0 < p 5 1. Before we state the stability results for this

scheme, we need a few definitions.

Defhltlon 4.1. Define an m-dimensional index vector v to be a vector in R", with components
having values of either 0 or 1. Define I. to be the set of all m-dimensional index vectors except P
the vector (0,0, . -,0}.

Theorem 4.2.

1. If < p :5 1, then Scheme (4.5) is unconditionally stable.
2. If 0 5 p < 1, and at > 0 for I - ,... ,m, then (4.5) is conditionally stable, the necessary and

sufficient condition is

2 min (4.6)

Proof. The root of characteristic polynomial for (4.5) is

S- (1 -p)~

=1

where
.u= 4rj sin 0, 0 :5. 2x,

k p

h,2'
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We can easily obtain
m2 2

+) =+[)2 (] (4.8)

2 1=1

It is clear that (4.8) s true if 5 p< 5 1_, and (4.5) i unconditionally stable in that case. In the
case 0 _< p < , it can be verified that g(yh,'".,y,,) reaches its maximum value in the region
D - {(I,",t) 05 '_< "5 4rg, : = l,...,m} only at the boundary of D. Clearly, at (0,-.-,0),
(4.8) always holds. Hence, we obtain (4.6).

U
Corllary 4.1. Supposeo <_I .

1. If., = 0 for some I, then (4.5) is unconditionally unstable.
2. If all the 4, have the same sign, then the stability condition is

k _ 1 ( 49)1

3. If T /= 0, 1 _ 1 5 m, then the stability condition

M < 21- j)

which is a classical result for the heat equation 129.

Proof. To prove the corollary, note first that ifj =t 0, then by choosing ii = (O,...,O,1,,---,0),
with the aI in the l-th position, in (4.6), we have k <p 0 and hence the scheme is uconditionally .

unstable.
Second, if all the b e have the same sign, the minimum in (4.) must occur for n = (II,..., i}T

from which (4.9) follows.

Lastly, if i = 0, 1 1 m m, then (4.10) follows directly from (4.9).

The result (4.8) ca be viewed as the extension of the stability result for the multi-dimensional

heat equation. It is easy to see that (4.6) is also the extension of (4.2) in Theorem 4.1.

5. The Leap-lfrogK Scheme
We now consider some three level schemes. First, we study the Leap-Frog Scheme:

(.. -t A( ,- 2 "+i +tau-,) (5.1)-
2k h2'i\i+ li i-+p

The truncation error is O(k, h).

k:5 1 (4.10
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Theorem 6. Scheme (6.1) is stable if and only if a 0 and r <-

Proof. The characteristic polynomial is

(O(z) + 2()rx - 1. (5.2)

We shall use the Schur theory outlined in Sec. 2 to determine conditions under which 6(z) is
Simple von Neumann. We have

-'(z)=- + 2(s - ib) + I
and *1(z) 4az.

Since I€'(O)t = i(0)1, O(z) can be simple von Neumann only if 01(z) a 0, i.e. a 0. Assuming
this, for #(z) to be simple von Neumann, 0'(z) a 2z + 2i4'y must be Schur, which leads to the
condition r < -1. U S

The stability result for the Leap-Frog scheme can be easily generalized to higher dimensions.
Consider the following scheme for (5.1)

U;o 2 k Au '&D1,U (5.3)

The corresponding characteristic polynomial is

O(z) = z2 + 2 171)z- 1.

By following the same proof as outlined above, it is easy to derive the following stability condition
for (5.3)

61,1 < 1. (5.4)

From (5.4) it is straightforward to derive the following:

Theorem 6.2. Scheme (5.3) is stable if and only if P

a1=0, 1=1,2,-..,m

and
VS 4 max( Bp, BN)'

Bpand BE~'
111>0 h2 &1<0

6. The Du-'ort hankel Scheme

This is a well-known scheme for the heat equation. With regard to (5.1), using j (u+2 + u;) S

instead of uS+ , we obtain the Du-Fort Scheme:

+2 - u

2k (6.1)--
where DF 'u +, - u -- u1+2 + 0+1 The truncation error is 0 (A h2, (,)2

where 
.r



Pag 12

Theorem 6.1. Scheme (6.1) is unconditionally stable.

Proof. The corresponding characteristic polynomial is

- (1 + 2Ar)z - (4Ar cos a)z - (1 - 2Ar).

We thus have
'()- -(1 -2(a - ;6)r).z- (4(. - ;)rci isl)z + (1+2(a - i)r), .

(z) Sort - Sar cou 0,

I'(o)I2 a (1 + 2ar)2 + 4&2r2,

and I,(O)12 - (1 - 2,r)2 + 46 r.

Since 1,'(O)I > JO(O)l and #I(z) is clearly simple von Neumann, this scheme is unconditionally
stable.

U

The extension of (6.1) to multi-dimensions is:

2k in At Dj4Tiu (6.2)

where DFjj is the DuFort-Frankel operator in the st-directiom. The characteristic polynomial is

104 1+ 2 0- (4 "Acs8)s z-(1- 2k t)

By following the same proof s in the one dimensional case, with ar replaced by k j and br by

k , one can easily prove:

Theorem 6.2. Scheme (6.2) is unconditionally stable.

7. The Three LWvei Backward Difference Scheme

This scheme [6, 291 is

3(1 - A D +lw, (7.1)

and its truncation error is O(k , h2).

Theorem 7.1. Scheme (7.!) is unconditionally stable.

Proof. The characteristic polynomial is

(z3 (+ a',+/5') z- 2z+

#(z)- + - ' + "7 2 - 2( + -

and , ... . )2(1 + . .. I - . . .........).
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It can be verified that

and therefore for stability, 01(z) must be simple Yon Neumann, which gives the condition:
20] + a7 - 07-) .,-.

<1. (7.2)(+ 6 -), + ,

Let T m (s + a-Y)2 + P9, then condition (7.2) is equivalent to

4 ((1 +.)' +P- ) < 2.

or 4(T - + T') T-

or (T - 2)2 + I + 4a- > 0

which is always satisfied since a 0. Therefore, this scheme is unconditionally stable.

The extension of (7.1) to multi-dimensions is

3( k 2k + ". (7.3)

The characteristic polynomial is 3
+ at-11 + i 61-1 .2 -2z+ .

By following the same proof as in the one dimensional case, with a- replaced by 1 al'yj and b by
Sal

5 ig , one can easily prove:

Theorem 7.2. Scheme (7.3) is unconditionally stable.

8. Schemes for the Real System

The schemes considered so far are applied directly to the equation (1.1), which is complex.
valued in general. But note that if we let u = v + iv (where v and v are real functions), then we
can rewrite (3.2) into the following real system:

Wt= by". + ew. (8.2)

While uy scheme for (1.1) has a direct analog for (8.1) and (8.2), this new system opens

up more possibilities for constructing numerical schemes because the individual terms of the right
hand side of (8.1) and (8.2) can be treated independently of one another by different methods. It
is also straightforward to implement these schemes in real arithmetic. In the next two sections, we
shall consider a few examples of such schemes.
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8.1. A Two-Level Rwal System Scheme
In this section, we shall consider the following 2-level scheme which is similar to, but effectively

different from, the Euler scheme for (1.1).

V. 1 - V. 1

k = ja - 2w7 + v7-,) -4 (w'+ 1 - 2,7 + "7-1] (8.3)
.I
k"-, + a ('7+, - 2"7 + "7-,)] (8.4)

This scheme appears to be semi-implicit, but actually it is explicit for computing because we can
compute vl+ ' from (8.3) explicitly, then substituting v*+ ' into (8.4), we can explicitly compute

W +1, It is easy to see that the truncation error of (8.3) and (8.4) is O(k, h2).

Theorem 8.1. Scheme (8.3) and (8.4) is stable if and only if

1

2(.+I1) (8.)

Proof. The amplification matrix for this scheme is

and the characteristic polynomial is

O(z) - z2 -z (2(l - a-) - 62?) + (1-1).

It follows that

'(z) I - a),z' -z (2(1 -a ) - b27) + I

and #1l(Z) - z(I -(1 _ S,)4) - ( -(1 -a1)') (2(l - .8) -b272)

Since 14(0)I > IO(0)l, 01(z) has to be simple von Neumann for the scheme to be stable.
Defining

2(1 -- 1) - b212
1+ (1-Y)2

this reduces to the condition
-1 A 1.

Since A can be rewritten as
+ ( 2 + =•-A-

it can be easily ven that the condition A < 1 is always satisfied The condition that -1 A
reduces to

g(v) * -(a7 - 2)' +



Page 15

which is equivalent to the condition

and gives the stability limit 1

Note that this scheme spans a stencil identical to that for the Euler scheme but the stability
condition is quite different. Unlike the Euler scheme, this scheme is conditionally stable even when 5
a =0. This improvement results from the implicit treatment of the v-term in (8.4) and is a direct
consequence of separating the original equatiom into real ad imaginary parts.

At first sight, it may appear possible to switch the role of v and v in (8.1) and (8.2) at
alternate time steps, similar in spirit to the ADI method, in order to achieve a combined scheme .

that is second order in time. Unfortunately, it can be verified that this is not true and the resulting •
alternating scheme is still irst order in time.

8.2. The Two-Level Real System Scheme In Mult-Dmemiusas

The results in the previous section can be extended to higher dimensions. Consider the
equation (5.1) which can be written into the following real system

.,l I~n (8.6)"

W1 M L~a + 6112810,1-i 1= lvsa/i p iva

and the following scheme:
v;.+- - - EeDt -maDA'

+=, Ml (8.7) P

181 1.l

The truncation error for (8.7) is again O(k, h2). m m

By replacing the terms . and b-. in the previous proof by ag'yj and 6 1-y respectively, S
I=1 1=1i

the same proof goes through for (8.7) and we obtain the following stability result:

Theorem 8.2. Scheme (8.7) is stable if and only if

1

8.3. A Du/ort-1ahkel Leap-"r Scheme for the Real System
Although the real system (8.1) and (8.2) can result in schemes that have superior stability

properties than schemes for the complex equation (1.1), deriving such schemes is not at all au- S ...
tomatic. In this section, we shall show that a rather natural scheme for the real system (8.1)

.. . . .. .. . . . . .. .. . . . m m , 3 -.
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and (8.2) actually haa worse stability properties than the corresponding schem for the complex
equation (1.1).

We construct a real 3-level scheme for (8.1), (8.2) as follows:

.1j, - ,i-I _

__ __2k + V (1) + ±. u;jQ+v Wr) I S a-2w + W i..1). (8.9)

2k f- (-a+' - 2y7j + h(2 i-w+ -. '+..) 89

This is a combination of Du-Fort Frankel Scheme and Leaphog Scheme. The truncation error is
0(k 2,lh2, (b)).

Theorsm LL3

1. If - 0, then (8.8), (8.9) (the scheme is equivalent to the complex Leap-frog Scheme) is
conditionally stable, the stability condition is

1 < 8.10)

2. ff -0 , then (8.8) (8.9) (the scheme is equivalent to the Du-Fort Franke Scheme for the heat
equation) i unconditionally stable.

3. If # 0 and b I 0, (8.8) (8.9) is inconditionay unstable.

Proof. The Fourier transform of (8.8),(8.9) can be written in this form:

(1 + 2ar)Iia + ' - MO? + (1 - 2r).*'-, (8.11)

where M"~ 4 1 ) 07r"y -

I is the identity matrix and (i, ,) are the Fourier transform of v and w.
It is easy to verif that M is normal and the eigenvalues p of M are:

p* - a(4r - 2-f) * i2I6I-. (8.12)

Therefoe Mcan be written as M - X'AXwhere Au( 0) and Xis aunitary matrix.

Multiply from the left of (8.11) by X, we obtain

(1 + 2.")XO+ ' - XMI' + (1 - 2@'r)Xi - . (8.13)

Defining

we have
(I + 2*r) + ' - XMX-'. + (1 - 2•r)O-'. (8.14)

I-.
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Due to the property of X and the definition of a, the stability of and 6 are equivalent. So we
need only to discuss the stability of s. Since XMX - 1 - A, we obtain from (8.14):

(1 + 2ar)s*+ ' = As* + (1 - 2ar)i -  (8.15)

i.e." -

(I + 2ar)p'+ ' = Lf + ( - 2ar) - (8.16)
(1 + 2ar)z'+' - j,-z' + (1 - 2ar)z" . (8.17)

Their characteristic polynomials are

#*(A) = (1 + 2ar)A - P*A - (I - 2r). (8.18)

From this we ca easily derive

( (-I + 2ar)A 2 - p;A + (I + 2ar),

#,(A) = (( + 2a,)2 - (I - 2ar)']A - [( - 2ar)fa + (I - 2sr)p: - 0, (8.19)
and ##(A) - 2(1 + 2ar)A - gag.p

n the cae - 0, 10"(O)1 - I(0)1, and #1(.%) a 0. Therefore stability requires #'(A) to be
Schur, which reduces to the condition Ibl-/< 1. The stability condition is thus r <45j.

In the case a > 0, I#*(0)l > 1#(0)1, so #,(A) must be Simple von Neumann. The only roots of
* ~ z(A) an

- 1 - r= iI&Ily.'

Hence
I1- n- .:..

Clearly, if b - 0, then IA*12 < I because 0 < - < 4r, and (8.8),(8.9) is stable. If & y 0,
IA*P= 1 + 16622 > 1 when Y = 4r and (8.8),(8.9) is unstable.

Therefore, as far as stability properties are concerned, this scheme is similar to the Leap Frog
scheme but is inferior to the complex Du-Fort Frankel Scheme, which is unconditionally stable.

9. Summary and ConcludIng Rmnarks

In this paper, we have presented a rather exhaustive collection of difference schemes for the
Schrdinger's equation (1.1). This includes explicit and implicit schemes, two and three level
schemes and schemes with artificial dissipation. It also includes schemes derived from the real
system obtained after separating the solution into its real and imaginary parts.

While many of the schemes are adaptations of well-known schemes for the wave equation and
the heat equation, the stability properties are often quite different and we have summarized the
main results in Table 1.

a-i

"' " " " " .. . " ; 2 "
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Scheme Error Stability Condition

Taylor Series for us = iusa p = I: unstable (Euler)
p = 2: unstable (Lax Wendroff)

-7- iD)'u O(k',h) p= 3: rS

pm 4: r5

General 2-level Scheme #j: (i) 0O _ <
O(k,h2) at = 0 for some 1: unstable

+1 1 lretI
Ai~jj' vPMI: all bt have same sign: k:5

I,'
(1)2AijD7 sa 0(k 2, h2) al 6mO: k!5

(ii) l: stable o

Euler with dissipative term ku. (a -0)
(o_-jP>0or a , ,:0)

- ilD a + (ol6l + i5b)k(D7):, O(k, h2) 7 < - '+--- ...

Scheme with least restrictive stability

...j..ibD-Oa +~- +T k(D)w O(k, h)r5I

Euler with dissipative term h2u., (at - 0) 0<0
and.4d 1 m

- ba(iD7 u, + (o + #)A? (D, ) u) O(k,/,4) k 5 min
sat

Scheme with least restrictive stability
8=_

lotl

Table 1: Summary of Schemes for u, LAin.,.,, At ai + i,e a_ 0, vm v+iw.
1.=1

Next, we would like to comment briefly on the effect of lower order terms (such as %, and v)
on the stability results, which arise in many applications. If we adopt the slightly weaker definition
of stability (2.1), under which the necessary and sufficient stability conditions given in Table I are
still sufficient, then it can be shown 129 that, when lower order terms are present, these conditions
remain sufficient to insure convergence of the numerical solution in the limit as k and h tend to
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Scheme Error Stability Condition

Leap-Frog
O(kh 2 ) all al = 0 and

U A Djj~lk : 4V~kIBN= 1

where Bp B } ,O
b4 >0 b, < 0

Du-fort Frankel

o (k,', ()') stable

Backward Difference
O(k 2 , h2) stable

2-level Real System Scheme

1 E.1L7,Lv - bI7,,w O(kh) Iml

W ! + 11 -,~ I i i i o w l 8

I~ij"+'v + aImraIw

Awl 1=1

Du-fort Frankel-Leap Frog
Real System Scheme -0: r5 _

o (k2, h' (h)2) b =0: stable

2 k Dfv -=Da$w, * ya 0 and b y10: unstable

="bD'" + ,DP

Table 1: Continued

zero (assuming the scheme is consistent). However, for fixed k and h, the numerical solution may
grow with each time step while the exact solution decays with time. We plan to further investigate
the practical stability of these schemes in the presence of lower order terms.

Stability results are important for at least two reasons: to ensure convergence of the numerical
solution to the exact solution as k and h tend to zero, and to ensure that the numerical scheme is
insensitive to round-off errors for fixed k and Al. The choice of a numerical scheme for a particular
application depends on more than just the stability property. In practice, accuracy and efficiency
are often the controlling factors. The optimal choice can often oriy be detemined empirically with
some experimentation.
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While we have limited ourselves to second order centered finite difference schemes for the spa.
tial discretization, and have not considered the use of higher order and finite element and spectral
methods, the framework used here can be used to derive thses schemes and their corresponding -

stability results as well.

10. Appendix. Proof of Theorem I

Proof. The amplification factor is given by

R = I - ,g[ii - (o + i.)'?]

where
kr- ii, S

and
N 4in-.

Stability requires

1RI = [i+ ArtbiI + (bir-e - Arm, ' -

30.2 2m
moird +2 fi(I ti - 2iile

If we define

then this condition can be written as
2 )

2a1faq?+*2k -- k

or 2~su

D1. {P, pE2 a (fi e .. ,a }

D,={; pED and <fs k> " q? 1

Sol
(~ ta Sl Sol
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Clearly, D D U D2.

We separate the two caes: :> and B <5-

Case L
1. Iii s•

Since p,:g flo s i?-  and 0:5 _ fi-4,

we have o0 B: A V11 - q, <- ,2, 1 1 ,12

and therefore 2 .

2a
L i [.2 + (P - 5) ] I.Z,,, -

- [ , +( 211] E fl,"
L0

On the other hand, in the case 2 14, (4, -,4) 6 D,, and

Daa

I.,., 0--s[, p I' y

Hence inGvi..,i)w-(01

2. In D 2

Since

we have 0< - - (E')' ( ) -

and therefore 2•
0 _ 2 - ,2) + em f) p ms,),] 2

Letting

we have 20
G S(w)- 2.

02W2+ o2.
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It is easy to see
infw 0,

and if we define
we sup W,"-

D2

then clearly,
W' S 6 a w(4,'",4) = 4(FJ ).

Because of the form ofS(w), it achieves its minimum at the end points of the range of w and
a. s a ,in(S(O), S(W'))

win (- 'a, S(i')) .

Hence
2o , S(W.)) (10.2)

From (10.1),(10.2), we have

k~ _ (--[+(;- 1)a] [a' +-D-)..

Since _ _ _ _ _

S(w) > S(). 8[.2+(A- a)1 -a'

we have the following stability condition when 0 -> 4,

Vs a 2a (10.3)k s == s [02 + 1p )21] L'

Case U. -c 1
Clearly, D, is empty and D Dj. It is easy to see that

G 2: min (s(o),s (4 ( fi)')2a a
min - , [=+F _)lE

The general stability condition is therefore (10.3). Clearly, we must have a < 0. To choose a and

sch that the stability condition is the last restrictive, we should take = so that we have

k: --- f- --)
To maximize the right hand side, we should takeso 1

4 
-

4 "
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and the stability condition becomes

1 1
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